

 [image: _images/mip-logo.png]
Release 2.0.

MIP [https://github.com/henrikstranneheim/MIP] is a pipeline for clinical analysis of
whole exome and whole genome sequence data.

Contents:

	MIP - Mutation Identification Pipeline
	Overview

	Features

	Example Usage

	Getting Started

	Installation

	Setup
	Filename convention

	Dependencies

	Adding a new program
	Call DefineParameters

	Command line arguments in GetOptions

	if-block run checker in MAIN

	Custom subroutine

	Further information

	Structure
	mip.pl

	Sequence QC

	Alignment

	BAM file manipulation

	Coverage QC

	Variant calling

	Variant QC

	Variant Selection

	Variant annotation

	Variant evaluation

	qcCollect.pl

	covplots_exome.R / covplots_genome.R

	vcfParser
	Usage

	Installation

	QCCollect
	Usage

	Installation

	SetUp

	score_mip_variants
	Consequence

	Frequency

	Inheritance Model(s)

	Protein Functional Prediction

	Variant Quality Filter

	Conservation

	Combined Annotation Dependent Depletion (CADD)

	ClinVar

	Dynamic Configuration File

	Pedigree File
	On UPPMAX

	Abbrevations

	Individual Identification Number (IDN)
	IDN Definition

	The Code
	Subroutines

Indices and tables

	Index

	Module Index

	Search Page

MIP - Mutation Identification Pipeline

MIP enables identification of potential disease causing variants from sequence
data.

Overview

MIP performs whole genome or target region analysis of sequenced single-end and/or paired-end
reads from the Illumina plattform in fastq(.gz) format to generate annotated
ranked potential disease causing variants.
MIP performs QC, alignment, coverage analysis, variant discovery and
annotation, sample checks as well as ranking the found variants according to disease potential
with a minimum of manual intervention. MIP is compatible with Scout [https://github.com/Clinical-Genomics/scout] for visualization of
identified variants.

Features

	
	Autonomous

	
	Checks that all dependencies are fulfilled before launching

	Builds/downloads references and/or files lacking before launching

	Splits and merges files for samples and families when relevant

	
	Automatic

	
	A minimal amount of hands-on time

	Tracks and executes all module without manual intervention

	Creates internal queues at nodes to optimize processing

	Minimal IO between nodes and login node

	
	Flexible:

	
	Design your own workflow by turning on/off relevant modules

	Restart an analysis from anywhere in your workflow

	Process one, or multiple samples using the module(s) of your choice

	Supply parameters on the command line, in a pedigree file or via config files

	Simulate your analysis before performing the actual analysis

	Redirect each modules analysis process to a temporary directory (@nodes or @login)

	Limit a run to a specific set of genomic intervals

	
	Fast

	
	Analyses an exome trio in approximately 6 h

	Rapid mode analyzes a WGS sample in approximately 4 h using a data reduction and parallelization scheme

	
	Traceability

	
	Recreate your analysis from the MIP log

	Logs sample meta-data and sequence meta-data

	Logs version numbers of softwares and databases

	
	Standardized

	
	Use standard formats whenever possible

	
	Visualization

	
	Output is directly compatibel with Scout

Example Usage

perl mip.pl -pMosaikBuild 0 -configFile 1_config.yaml

Getting Started

Installation

MIP is written in Perl and therfore requires that Perl is installed on your OS (See Installation).

Prerequisites

MIP will only require prerequisites when processing a modules that has dependencies (See Setup).
However, some frequently used sequence manipulation tools e.g. samtools, PicardTools, Bedtools are probably
good to have in your path.

Meta-Data

Meta data regarding the pedigree, gender and phenotype should be supplied for the analysis.

	Pedigree file (PLINK [http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml]-format; See Pedigree File & MIP´s github repository [https://github.com/henrikstranneheim/MIP/tree/master/templates]).

	Configuration file (YAML [http://www.yaml.org/]-format; See Dynamic Configuration File & MIP´s github repository [https://github.com/henrikstranneheim/MIP/tree/master/templates]).

Usage

MIP is called from the command line and takes input from the command line
(precedence), a config file (yaml-format) or falls back on defaults where applicable.

Lists are supplied as comma separated input, repeated flag entries on the command line or
in the config using the yaml format for arrays.

Note

List or repeated entries need to be submitted with the same order for each element across all
supplied lists.

Only flags that will actually be used needs to be specified and MIP will check that all
required parameters and dependencies (for these flags only) are set before submitting to SLURM.

Program parameters always begins with “p” followed by a capital letter. Program parameters can be set to “0”
(=off), “1” (=on) and “2” (=dry run mode). Any program can be set to dry
run mode and MIP will create sbatch scripts, but not submit them to SLURM for these modules. MIP
can be restarted from any module, but you need to supply previous dependent
programs in dry run mode to ensure proper file handling.

MIP will overwrite data files when reanalyzing, but keeps all “versioned” sbatch scripts for traceability.

MIP allows individual target file calculations if supplied with a pedigree file or config file
containing the supported capture kits for each sample.

You can always supply perl mip.pl -h to list all available parameters and
defaults.

Example usage:

$ perl mip.pl -f 3 -sampleid 3-1-1A,3-2-1U -sampleid 3-2-2U -pFQC 0 -pMosaikBuild 2 -pMosaikAlign 2 -c 3_config.yaml

This will analyze family 3 using three individuals from that family and begin the
analysis with programs after MosaikAlign and use all parameter values as
specified in the config file, except those supplied on the command line, which
has precedence.

Input

MIP requires the input Fastq files to follow a naming convention to accurately and automatically handel individual runs and lanes (See Setup).

Fastq files (gziped/uncompressed) should be place within the -inFilesDirs.

Note

MIP will automatically compress any non gzipped files if -pGZip is enabled.
All files ending with .fastq or .fast.gz will be included in the run.

All MIP scripts (including mip.pl) should be placed in the script directory
specified by -inScriptDir.

All references and template files should be placed directly in the reference
directory specified by -referencesDir, except for ANNOVAR db files, which
should be located in annovar/humandb.

Output

Analyses done per individual is found under respective sampleID subdirectory and analyses done including all samples can be found under the family directory.

Sbatch Scripts

MIP will create sbatch scripts (.sh) and submit them in proper order with
attached dependencies to SLURM. These sbatch script are placed in the output
script directory specified by -outScriptDir. The sbatch scripts are versioned
and will not be overwritten if you begin a new analysis. Versioned “xargs” scripts will also
be created where possible to maximize the use of the cores procecessing power.

Data

MIP will place any generated datafiles in the output data directory specified by
-outDataDir. All datatfiles are regenerated for each analysis. STDOUT and
STDERR for each program is written in the <program>/info directory prior to
alignment and in the <aligner>/<program>info directory post alignment.

Analysis Types

Currently, MIP handles WES -at exomes, WGS -at genomes or Rapid analysis -at rapid for acute patient(s).

The rapid analysis requires BWA_MEM and selects the data that overlaps with the regions supplied with
the -bwamemrdb flag. MIP will automatically detect if the sequencing run is single-end or paired-end
and the length of the sequences and automatically adjust accordingly.

Note

In rapid mode; Sort and index is done for each batch of reads in the BWA_Mem call, since the link to infile is broken by the read batch processing.
However pPicardToolsSortSam should be enabled to ensure correct fileending and merge the flow to ordinary modules.

Project ID

The -projectID flag sets the account to which core hours will be allocated in SLURM.

Aligner

Currently MIP officially supports two aligners Mosaik [https://github.com/wanpinglee/MOSAIK] and BWA [http://bio-bwa.sourceforge.net/], but technically supports any aligner that outputs BAM files.
Follow the instructions in Adding a new program to add your own favorite aligner.

Log

MIP will write the active analysis parameters and STDOUT to a log file located in:
{OUTDIRECTORY}{FAMILYID}/{MIP_LOG}/{SCRIPTNAME_TIMESTAMP}

Information, such as infile, programs, outdatafiles etc, for each analysis run is dynamically
recorded in the a yaml file determined by the -sampleInfoFile flag. Information in the sampleInfo
file will be updated in each analysis run if identical records are present and novel entries are added.
The sampleInfo file is used in QCCollect to extract relevant qc metrics from the MPS analysis.

Pipeline WorkFlow

This is an example of a workflow that MIP can perform (used @CMMS).

[image: _images/MIP_workflow.png]

Installation

	Install a fresh copy of Perl

On UNIX, Perl5 can be installed by following these instructions [http://learn.perl.org/installing/unix_linux.html]. It uses Perlbrew [http://perlbrew.pl/].

	To switch to the new Perl installation, you might need to run:

$ INSTALLER_PERL_VERSION=5.16.0
$ perlbrew switch perl-$INSTALLER_PERL_VERSION

	“Install” MIP

clone the official git repository
$ git clone https://github.com/henrikstranneheim/MIP.git
$ cd MIP
$ perl mip.pl -h

After this you can decide whether to make MIP an “executable” by either adding the install directory to the $PATH in e.g. “~/.bash_profile” or move all the files from this directory to somewhere already in your path like “~/usr/bin”.
Remember to make the file(s) executable by chmod +x file.

	Dependencies

You need to make sure all depedencies are installed and loaded (See Setup).
However, MIP should tell you if something is missing.

	To install the dependencies - use cpanm:

cpanm <dependency>
$ cpanm YAML

Setup

Filename convention

The permanent filename should follow the following format:

{LANE}_{DATE}_{FLOW CELL}_{IDN}_{BARCODE SEQ}_{DIRECTION 1/2}.fastq.qz

Note

The familyID and sampleID(s) needs to be unique and the sampleID supplied should be
equal to the {IDN} in the filename.

Dependencies

Make sure you have loaded/installed all dependencies and that they are in your $PATH.
You only need to load the dependencies that are required for the modules that you want to
run. If you fail to install dependencies for a module, MIP will tell you what dependencies
you need to install (or add to your $PATH) and exit. Version after the software name
are tested for compatibility with MIP.

Program/Modules

	Perl YAML.pm [http://search.cpan.org/~mstrout/YAML-0.84/lib/YAML.pm] module and Log::Log4perl.pm [http://search.cpan.org/~mschilli/Log-Log4perl-1.46/lib/Log/Log4perl.pm] since this is not included in the Perl standard
distribution

	Simple Linux Utility for Resource Management (SLURM [http://slurm.schedmd.com/])

	FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] (version: 0.11.2)

	Mosaik [https://github.com/wanpinglee/MOSAIK] (version: 2.2.24)

	BWA [http://bio-bwa.sourceforge.net/] (version: 0.7.10)

	SAMTools [http://samtools.sourceforge.net/] (version: 1.1)

	BedTools [http://bedtools.readthedocs.org/en/latest/] (version: 2.20.1)

	PicardTools [http://picard.sourceforge.net/] (version: 1.125)

	Chanjo [https://chanjo.readthedocs.org/en/latest/] (version: 2.3.0)

	GATK [http://www.broadinstitute.org/gatk/] (version: 3.3-0)

	VEP [http://www.ensembl.org/info/docs/tools/vep/index.html] (version: 76)

	vcfParser.pl (Supplied with MIP; see vcfParser)

	SnpEff [http://snpeff.sourceforge.net/] (4.0)

	ANNOVAR [http://www.openbioinformatics.org/annovar/] (version: 2013-08-23)

	GENMOD [https://github.com/moonso/genmod/] (version: 1.7.7)

	Score_mip_variants [https://github.com/moonso/score_mip_variants] (version: 0.5.4)

	VcfTools [http://vcftools.sourceforge.net/] (version: 0.1.12b)

	PLINK [http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml] (version: 1.07)

Depending on what programs you include in the MIP analysis you also need to add
these programs to your $PATH:

	FastQC

	Mosaik

	BWA

	SAMTools

	Tabix

	BedTools

	VcfTools

	PLINK

and these to your python virtualenvironment:

	Chanjo

	GENMOD

	Score_mip_variants

	Cosmid [https://github.com/robinandeer/cosmid] (version: 0.4.9.1) for automatic download

To make sure that you use the same commands to work on the virtualenvironment, you need to
install a virtual environment wrapper. We recommend pyenv [https://github.com/yyuu/pyenv] and pyenv-virtualenvwrapper [https://github.com/yyuu/pyenv-virtualenvwrapper].
To enable the virualenvwrapper add: pyenv virtualenvwrapper to your ~/.bash_profile.

Databases/References

Please checkout Cosmid [https://github.com/robinandeer/cosmid] to download references and/or databases on your own or via MIP.

MIP can build/download many program prerequisites automatically:

Note

Download is only enabled when using the default parameters of MIP and requires a Cosmid
installation in your python virtualenvironment.

Automatic Download:

	Human Decoy Genome Reference (1000G)

	The Consensus Coding Sequence project database (CCDS)

	Relevant references from the 1000G FTP Bundle (mills, omni, dbsnp etc)

Automatic Build:

	Human Genome Reference Meta Files:

	
	The sequence dictionnary (”.dict”)

	The ”.fasta.fai” file

	Mosaik:

	
	The Mosaik align format of the human genome {mosaikAlignReference}.

	The Mosaik align jump database {mosaikJumpDbStub}.

	The Mosaik align network files {mosaikAlignNeuralNetworkPeFile} and {mosaikAlignNeuralNetworkSeFile}. These will be copied from your MOSAIK installation to the MIP reference directory.

	BWA:

	
	The BWA index of the human genome.

Note

If you do not supply these parameters (Mosaik/BWA) MIP will create these from scratch using the supplied
human reference genom as template.

	Capture target files:

	
	The “infile_list” and .pad100.infile_list files used in {pPicardToolsCalculateHSMetrics}

	The ”.pad100.interval_list” file used in by some GATK modules.

Note

If you do not supply these parameters MIP will create these from scratch using the supplied
latest supported capture kit ”.bed” file and the supplied
human reference genome as template.

ANNOVAR:
The choosen Annovar databases are downloaded before use if lacking in the annovar/humandb
directory using Annovars built-in download function.

Note

This applies only to the supported annovar databases. Supply flag “–annovarSupportedTableNames 1”
to list the MIP supported databases.

Adding a new program

You need to perform a series of tasks to properly add a program to MIP. An overview of the steps can be found here:

	Call DefineParameters

	Command line arguments in GetOptions

	if-block run checker in MAIN

	Print program name to MIPLOGG and STDOUT

	Call your custom subroutine (ses below) with relevant parameters

	Custom subroutine

	Writes SBATCH headers

	Figure out i/o files

	Builds out the body of the SBATCH script

	Calls FIDsubmitJob

More details follow below. Chanjo [https://chanjo.readthedocs.org/en/latest/], a program which is part of the coverage analysis, will be used as an example.

Call DefineParameters

This subroutine takes a number of input parameters. There are basically three parameter types: “program”, “file”, and “attribute”. Try to group your parameter definitions with related programs.

DefineParameters("pChanjoBuild", "program", 1, "MIP", 0, "nofileEnding", "CoverageReport");

DefineParameters("chanjoBuildDb", "path", "CCDS.current.txt", "pChanjoBuild", "file");

DefineParameters("pChanjoCalculate", "program", 0, "MIP", 0, "nofileEnding", "MAIN");

DefineParameters("chanjoCalculateCutoff", "program", 10, "pChanjoCalculate", 0)

DefineParameters - parameters

	Parameter
	Example
	Description

	Name
	pChanjoBuild
	Program names start with ‘p’ by convention, otherwise it’s up to you.

	Type
	program
	Can be either program or path.

	Default
	1
	Program: 1/0 as on/off, file: <path to file> or ‘nodefault’, attribute: e.g 10 or ‘nodefault’

	Associated program
	MIP
	Typically the program that calls this program. program: usually MIP, file/attribute: <Name>.

	Exists check
	0
	Perform a check that a file is in the reference directory. Either: 0, ‘file’, ‘directory’.

	File ending
	nofileEnding
	File ending when module is finished. MIP uses this to determine input files downstream in the Chain. file/attribute: skip.

	Chain
	MAIN
	The chain to which the program belongs to. file/attribute: skip.

	Check install
	chanjo
	The program handle to check whether it is in the $PATH. file/attribute: skip.

Command line arguments in GetOptions

This is the method that parses the command line input and stores the options. To add your own defined parameters you need to add lines like this:

'<short_option>|<long_option>:<s(tring)/n(umber)>' => \$parameter{'<long_option>'}{'value'},

You should replace anything that looks like <placeholder>:

'pCh|pChanjoBuild:n' => \$parameter{'pChanjoBuild'}{'value'}, # ChanjoBuild coverage analysis
'chbdb|chanjoBuildDb:s' => \$parameter{'chanjoBuildDb'}{'value'}, # Central SQLite database path
'pCh_C|pChanjoCalculate:n' => \$parameter{'pChanjoCalculate'}{'value'}, # Chanjo coverage analysis
'chccut|chanjoCalculateCutoff:n' => \$parameter{'chanjoCalculateCutoff'}{'value'}, # Cutoff used for completeness

Again, program options begin with a leading “p” by convention. Make sure you don’t cause any naming conflicts.

Lists can also be specified with a special syntax. Basically you need to assign the option to an array instead of $scriptParameters.

'ifd|inFilesDirs:s' => \@inFilesDirs, #Comma separated list

Later in your code when you would like to access those values you would join on ”,”.

@inFilesDirs = join(',', @inFilesDirs);

Note

MIP doesn’t use True/False flags, all options take at least one argument. For program options it’s possible to turn on (1), off (0) and run programs in dry mode (2). All program options should specify “n(umber)” as argument type.

if-block run checker in MAIN

The if-block checks whether the program is set to run but it also has a number of additional responsibilities.

Perhaps the most important is to define dependencies. This is done by placing your if-statement after the closest upsteam process to yours. ChanjoBuild, for example, needs to wait until PicardToolsMarkDuplicates has finished processing the BAM-files before running.

Closest upsteam dependency for Chanjo
if ($scriptParameter{'pPicardToolsMarkduplicates'} > 0) {
 # Body...
}

This is where Chanjo fits!
if ($scriptParameter{'pChanjoBuild'} > 0) {
 # Body...
}

Next (inside the if-block) it should print an announcement to two file handles:

for my $fh (STDOUT, MIPLOGG) { print $fh "\nChanjoBuild\n"; }

Lastly it should call a Custom subroutine, e.g. for each individual sample or per family, which will write a SBATCH
script(s), submit them to SLURM, which executes the module.

Note

$sampleInfo is a hash table storing sample information, for example filename endings from
different stages of the pipeline. It’s used to determine input filenames for your program.

Custom subroutine

First up, let’s choose a relevant (and conflict free) name for our subroutine.

sub ChanjoBuild {
 # Body...
}

If we pass ALL nessesary variables into the subroutine and assign them as scoped variables it’s easy to overview variables used inside.

my $sampleID = $_[0];
my $familyID = $_[1];
my $aligner = $_[2];
etc ...

a) SBATCH headers

SBATCH headers are written by the ProgramPreRequisites subroutine. It takes a number of input arguments.

ProgramPreRequisites($sampleID, "ChanjoBuild", "$aligner/coverageReport", 0, *CHANJOBUI, 1, $runtimeEst);

ProgramPreRequisites - paramaters

	Parameter
	Example
	Description

	Directory
	11-1-1A
	Either a sample ID (e.g. IDN) or family ID depending on where output is stored.

	Program
	chanjo
	Used in SBATCH script filename.

	Program directory
	$aligner/coverageReport
	Defines output directory under Directory. Path should include current aligner by convention.

	Call type
	0
	Options: SNV, INDEL or BOTH. Can be set to: 0 ???

	File handle
	*CHANJO
	The program specific file handle which will be written to when generating the SBATCH script. Always prepend: ‘*’.

	Cores
	1
	The number of cores to allocate.

	Process time
	1.5
	An estimate of the runtime for the particular sample in hours.

b) Figure out i/o files

It’s up to you to figure out where your program should store output files. Basically you need to ask yourself whether putting them in the family/sample foler makes the most sense.

It’s a good idea to first specify both in- and output directories.

my $baseDir = "$outDataDir/$sampleID/$aligner";
my $inDir = $baseDir;
my $outDir = "$baseDir/coverageReport";

If you depend on earlier scripts to generate infile(s) for the new program it’s up to you to figure out the closest program upstream. After that you can ask for the file ending.

my $infileEnding = $sampleInfo{ $familyID }{ $sampleID }{'pPicardToolsMarkduplicates'}{'fileEnding'};

$sampleInfo is a hash table in global scope.

MIP supports multiple infiles and therefore MIP needs to check if the file(s) have been merge or not.This is done with the CheckIfMergedFiles subroutine, which returns either a 1 (files was merged) or 0 (no merge of files)

my ($infile, $mergeSwitch) = CheckIfMergedFiles($sampleID);

Note

$infilesLaneNoEnding is a global hash table containing information about the filename-bases (compare filename-endings).

c) Build SBATCH body

This is where you fit relevant parameters into your command line tool interface. Print everything to the file handle you defined above.

print CHANJOBUI "
--
Create a temp JSON file with exon coverage annotations
--\n";
print CHANJOBUI "chanjo annotate $storePath using $bamFile";
print CHANJOBUI "--cutoff $cutoff";
print CHANJOBUI "--sample $sampleID";
print CHANJOBUI "--group $familyID";
print CHANJOBUI "--json $jsonPath";

I'm done printing; let's drop the file handle
close(CHANJOBUI);

Note

A wait command should be added after submitting multiple processes in the same SBATCH script with the & command. This will ensure SLURM waits for all processes to finish before quitting on the job.

d) Call FIDSubmitJob

This subroutine is responsible for actually submitting the SBATCH script and handling dependencies. You should only call this if the program is supposed to run for real (not dry run).

if (($runMode == 1) && ($dryRunAll == 0)) {
 # ChanjoBuild is a terminally branching job: linear dependencies/no follow up
 FIDSubmitJob($sampleID, $familyID, 2, $parameter{'pChanjoBuild'}{'chain'}, $filename, 0);
}

FIDSubmitJob - paramaters

	Parameter
	Example
	Description

	Sample ID
	11-1-1A
	The sample ID/person IDN

	Family ID
	11
	The family ID

	Dependency type
	2
	Choose between type 0-4 (see below)

	Chain key
	$parameter{‘pChanjo’}{‘chain’}
	The chain defined in DefineParameters

	SBATCH filename
	$filename
	Always use this variable. It automagically points to your SBATCH script file.

	Script tracker
	0
	Huh? Something about parallel processes...

To figure out which option (integer) to supply as the third argument to FIDSubmitJob you can take a look at this illustration.

[image: _images/FIDsubmit.png]

Note

$filename is a variable that is created in ProgramPreRequisites. It points to your freshly composed SBATCH script file and should be supplied to FIDSubmitJob by all custom subroutines.

Note

$parameter{'pChanjoBuild'}{'chain'} is just the chain that you set in DefineParameters. In this case we could’ve replaced it with “MAIN”.

Further information

For your convinience a template program module can be found in the project folder hosted on GitHub. [ADD LINK TO TEMPLATE]

Structure

mip.pl

Central hub and likely the only script most users will ever interact directly with.

$ echo "Running MIP on Uppmax, analyzing all samples in family 10"
$ mip.pl -c CMMS_Uppmax_config.yaml -f 10

Sequence QC

Raw sequence quality control: FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]

Alignment

Currently MIP supports these aligners:

	Mosaik [https://github.com/wanpinglee/MOSAIK] (WES, WGS)

	BWA [http://bio-bwa.sourceforge.net/] (WES, WGS, Rapid WGS)

BAM file manipulation

	Sorting and indexing: PicardTools [http://picard.sourceforge.net/] (SortSam)

	Duplicate marking: PicardTools [http://picard.sourceforge.net/] (MarkDuplicates)

	Realignment and base recalibration: GATK [http://www.broadinstitute.org/gatk/] (Realigner & BaseRecalibration)

Coverage QC

	Coverage Report and QC metrics: Chanjo [https://chanjo.readthedocs.org/en/latest/] & BedTools [http://bedtools.readthedocs.org/en/latest/]

	QC metrics: PicardTools [http://picard.sourceforge.net/] (MultipleMetrics & HSmetrics)

Variant calling

	Variant discovery and recalibration: GATK [http://www.broadinstitute.org/gatk/] (HaploTypeCaller, GenoTypeGVCFs & VariantRecalibration)

Variant QC

	All variants: GATK [http://www.broadinstitute.org/gatk/] (VariantEval)

	Exonic variants: GATK [http://www.broadinstitute.org/gatk/] (VariantEval)

Variant Selection

Select transcripts that overlap a gene list: vcfParser

Variant annotation

Collect transcript and amino acid information and information from external
databases as well as annotation of inheritance models: VEP [http://www.ensembl.org/info/docs/tools/vep/index.html], vcfParser, SnpEff [http://snpeff.sourceforge.net/], ANNOVAR [http://www.openbioinformatics.org/annovar/], GENMOD [https://github.com/moonso/genmod/]

Variant evaluation

Score and rank each variant using weighted sums according to disease causing potential: Score_mip_variants [https://github.com/moonso/score_mip_variants]
(see score_mip_variants)

qcCollect.pl

Collects QC data from the MPS analysis in YAML format. (see QCCollect).

covplots_exome.R / covplots_genome.R

Plots coverage across chromosomes.

vcfParser

Parses vcf files to reformat/add INFO fields and metaData headers and/or select entries
belonging to a subgroup e.g. a list of genes. Input can be piped or supplied as an infile.

Usage

vcfParser.pl infile.vcf > outfile.vcf

vcfParser.pl infile.vcf --parseVEP 1 -rf External_Db.txt -rf_ac 3 -sf genes.v1.0.txt -sf_mc 3 -sf_ac 3,4,11,15,17,20 -sof selected_genes.vcf > outfile.vcf

Installation

vcfParser is written in Perl, so naturally you need to have Perl installed. The perl
module Set::IntervalTree [https://metacpan.org/pod/Set::IntervalTree] is required and are used to add “ranged” annotations.

VEP

Parses the output from VEP to include RefSeq transcripts. The transcript and protein
annotations, moste severe consequence and gene annotations are also included in the output
. Transcript protein predictions (Sift and Polyphen) can also be included.

Select Mode

A list of genes and their corresponding HGNC Symbol can be used to fork the analysis into
“selected” genes and “orphan” genes.

GuideLines on format for database of genes

	The database file should contain a header line starting with “#”.

	The number of headers should match the number of field elements for each entry.

	Do not use whitespace in headers.

	Do not use ”;” in file.

	Separate elements in fields with ”,”. Do not use ”, ”.

	No whitespace in the beginning or end within fields.

	No entries should be duplicated within database.

	Length of gene coordinates should be greater than 0

	Only digits in gene coordinate entries

Range Annotations

vcfParser can also add range annotations to the vcf by using the Set::IntervalTree [https://metacpan.org/pod/Set::IntervalTree] perl
cpan module and a file with chromosomal coordinates and features to be annotated.

QCCollect

Collects information on MPS analysis from each analysis run. Uses YAML files for input and output.
QCCollect uses a yaml file for matching the outdata produced in each run to another yaml file with
regular expression used to actually collect the data from the output files. The collected data is then written
to disc in yaml format.

MIP produces a sampleInfo yaml file, containing all sample and family information used in each analysis run.

Usage

perl qcCollect.pl -si [SampleInfoFilePath] -r [regularExpressionFilePath] -o [Outfile]

Installation

qcCollect is written in Perl, so naturally you need to have Perl installed.

SetUp

1. The regular expression file needs to be created. The regExp file used at CMMS can be
printed from qcCollect using the -preg & -prego flags

qcCollect Parameters

	Short/Long
	Default Value
	Type
	Summary

	-si/–sampleInfoFile
	Na
	String
	The sample info file (Yaml;supply whole path)

	-r/–regExpFile
	Na
	String
	The regular expresion file (Yaml;supply whole path)

	-o/–outfile
	“qcmetrics.yaml”
	String
	The output file

	-preg/–printRegExp
	0
	Integer
	Print RegExp YAML file used at CMMS switch

	-prego/–printRegExpOutFile
	“qc_regExp.yaml”
	String
	The RegExp YAML outfile

	-h/–help
	Na
	Na
	Display help message

	-v/–version
	Na
	Na
	Display version

score_mip_variants

Score_mip_variants uses the weighted sum model [http://en.wikipedia.org/wiki/Weighted_sum_model] (WSM) approach to rank the most likely
pathogenic variant.

Generally, the higher value the more likely pathogenic variant.

Score_mip_variants uses config files to define the rank model, which enables customized
set-up and versioning of rank models.

The WSM uses the following alternatives and weights in rank model “gm_cmms_v1.2”:

Rank score range: -25 <= rs <= 21

Consequence [http://www.ensembl.org/info/genome/variation/predicted_data.html]

Each alleles variant effect on individual transcripts are evaluated using a rule-based approach
defined by SO-terms [http://www.sequenceontology.org/]. The SO-terms themselves are ranked in order of severity and this ranking
is used to defined the weight of the consequence alternative. The performance score is based
on the most severe consequence within each gene.

	Performance value for the SO-terms:

	
	transcript_ablation = 5

	splice_donor_variant = 4

	splice_acceptor_variant = 4

	stop_gained = 4

	frameshift_variant = 4

	stop_lost = 4

	initiator_codon_variant = 4

	inframe_insertion = 3

	inframe_deletion = 3

	missense_variant = 3

	transcript_amplification = 3

	splice_region_variant = 3

	incomplete_terminal_codon_variant = 3

	synonymous_variant = 1

	stop_retained_variant = 1

	coding_sequence_variant = 1

	mature_miRNA_variant = 1

	5_prime_UTR_variant = 1

	3_prime_UTR_variant = 1

	non_coding_exon_variant = 1

	nc_transcript_variant = 1

	intron_variant = 1

	NMD_transcript_variant = 1

	upstream_gene_variant = 1

	downstream_gene_variant = 1

	TFBS_ablation = 1

	TFBS_amplification = 1

	TF_binding_site_variant = 1

	regulatory_region_variant = 1

	regulatory_region_ablation = 1

	regulatory_region_amplification = 1

	feature_elongation = 1

	feature_truncation = 1

	intergenic_variant = 0

Frequency

The alternative allele frequency (AF) in public databases (1000G [http://www.1000genomes.org/], ExAC [http://exac.broadinstitute.org/about]). The highest reported
alternative frequency reported from the databases is used to calculate the performance value.

	Definitions:

	
	Not reported: AF Na

	Rare: AF <= 0.005

	Intermediate: 0.005 <= AF <= 0.02

	Common: AF > 0.02

	Performance value for maximum AF:

	
	Not reported = 3

	Rare = 2

	Intermediate = 1

	Common = -12

Inheritance Model(s)

The segregation pattern for the variant within the family. These models are currently annotated
using genmod [https://github.com/moonso/genmod].

	Definitions:

	
	Autsomal Recessive, denoted ‘AR_hom’

	Autsomal Recessive denovo, denoted ‘AR_hom_dn’

	Autsomal Dominant, ‘AD’

	Autsomal Dominant denovo, ‘AD_dn’

	Autosomal Compound Heterozygote, ‘AR_comp’

	X-linked dominant, ‘XD’

	X-linked dominant de novo, ‘XD_dn’

	X-linked Recessive, ‘XR’

	X-linked Recessive de novo, ‘XR_dn’

	Performance value for inheritance models:

	
	Valid model = 1

	No model = -12

Protein Functional Prediction

The predicted functional effect on the protein.
Currently 2 protein effect predictors are used (Sift [http://sift.jcvi.org/], PolyPhen2 [http://genetics.bwh.harvard.edu/pph2/]).
Each predictors can contribute 1 point each to the overall protein predictor performance score.

SIFT predicts whether an amino acid substitution is likely to affect protein function based
on sequence homology and the physico-chemical similarity between the alternate amino acids [1 [http://www.ncbi.nlm.nih.gov/pubmed/?term=22689647]].

PolyPhen-2 predicts the effect of an amino acid substitution on the structure and function
of a protein using sequence homology, Pfam annotations, 3D structures from PDB where available,
and a number of other databases and tools (including DSSP, ncoils etc [2 [http://www.ncbi.nlm.nih.gov/pubmed/?term=20354512]].

Definitions:

	Sift Terms:
	“D” Deleterious (score<=0.05)

	“T” Tolerated (score>0.05)

	PolyPhen2HumVar [http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction] Terms:
	“D”: Probably damaging (>=0.909)

	“P”: Possibly damaging (0.447<=pp2_hvar<=0.909)

	“B”: Benign (pp2_hvar<=0.446)

Performance value for protein predictors:

	Sift:
	D = 1

	PolyPhen2HumVar:
	D or P = 1

Variant Quality Filter

Each variant call has a filter tranche attached to it indicating the quality of the actual
variant call.

Definitions:

	PASS

	Other (Tranches e.g. For GATK [3 [http://www.ncbi.nlm.nih.gov/pubmed?term=20644199]]: “VQSRTrancheBOTH99.90to100.00”

	Performance value for variant quality filter:

	
	PASS = 3

	Other = 0

Conservation

The level of conservation for a sequence element (PhastCons [http://compgen.bscb.cornell.edu/phast/help-pages/phastCons.txt] [4 [http://www.ncbi.nlm.nih.gov/pubmed/?term=16024819]]), nucleotides or classes of
nucleotides PhyloP [http://compgen.bscb.cornell.edu/phast/help-pages/phyloP.txt] [5 [http://www.ncbi.nlm.nih.gov/pubmed/?term=14660683]] both from the Phast [http://compgen.bscb.cornell.edu/phast/] [6 [http://www.ncbi.nlm.nih.gov/pubmed/?term=21278375]] package as well as genomic constraint score
GERP [http://mendel.stanford.edu/SidowLab/downloads/gerp/] [7 [http://www.ncbi.nlm.nih.gov/pubmed/?term=15965027]] is used. The Phast datasets used in the conservation calculation were generated
by the UCSC/Penn State Bioinformatics comparative genomics alignment pipeline. A description of this analysis can be found at UCSC [http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way]. Each type of
conservation can contribute 1 point each to the overall conservation performance score.

Definitions:

	Conserved
	PhastCons: 0.8 >= Score <= 1

	GERPRS: Score >= 2

	PhyloP: Score > 2,5

	Performance value for conservation:

	
	Conserved:
	PhastCons = 1

	PhyloP = 1

	GERP = 1

Combined Annotation Dependent Depletion (CADD)

CADD [http://cadd.gs.washington.edu/] is a tool for scoring the deleteriousness of single nucleotide variants as well as
insertion/deletions variants in the human genome. C-scores strongly correlate with allelic
diversity, pathogenicity of both coding and non-coding variants, and experimentally measured
regulatory effects, and also highly rank causal variants within individual genome sequences.
The CADD-score is a pre-calculated for all SNVs and for indel from 1000G-project [8 [http://www.ncbi.nlm.nih.gov/pubmed/?term=24487276]].

Definitions:

	Deleterious (CADD > 20)

	Mildly deleterious (CADD > 10)

Performance value for CADD:
- Deleterious = 2
- Mildly deleterious = 1

ClinVar

ClinVar [http://www.ncbi.nlm.nih.gov/clinvar/] [9 [http://www.ncbi.nlm.nih.gov/pubmed/?term=24234437]] is a freely accessible, public archive of reports of the relationships
among human variations and phenotypes, with supporting evidence.

Definitions:

	Uncertain significance = 0

	Not provided = 1

	Benign = 2

	Likely benign = 3

	Likely pathogenic = 4

	Pathogenic = 5

	Drug response = 6

	Histocompatibility = 7

	Other = 255

	Performance value for ClinVar:

	
	Uncertain significance = 0

	Not provided = 0

	Benign = -1

	Likely benign = 0

	Likely pathogenic = 1

	Pathogenic = 2

	Drug response = 0

	Histocompatibility = 0

	Other = 0

Dynamic Configuration File

MIP uses dynamic configuration files in YAML format to load parameters for each analysis run.
An example configuration file can be found here [https://github.com/henrikstranneheim/MIP/tree/master/templates].

To facilitate using different clusters, projects and tailoring the MIP analysis to each run without having to
create new configuration files each time you can supply a cluster/project specifc configuration file. Certain paths
in the configuration file information will be updated to the current analysis when MIP executes.

This requires that these two entries are added to the configuration file:

	‘clusterConstantPath: {value}’, specifying the project path.

	‘analysisConstantPath: {value}’, specifying the analysis directory.

Entries in the configuration file containing the following “dynamic strings” will be updated in MIP:

	CLUSTERCONSTANTPATH! = ‘clusterConstantPath: {value}’

	ANALYSISCONSTANTPATH! = ‘analysisConstantPath: {value}’

	ANALYSISTYPE! = ‘analysisType: {value}’

	FDN! = ‘-f familyID’ (from command line)

	IDN! = ‘-s sampleIDs’ (from command line), configuration file or supplied pedigree file

For instance, the pedigree file entry in the configuration file can be supplied like this:

‘pedigreeFile: CLUSTERCONSTANTPATH!/ANALYSISTYPE!/FDN!/FDN!_pedigree.txt’

and each path element will be replaced with the corresponding value as specified in the
configuration file, command line (precedence) or pedigree file.

Note

Any entries not containing “dynamic strings” will not be modified by MIP.

Both updated and constant entries will be written to the analysis specific folder if specified by
‘-wc’.

Capture kits info supplied in the configuration file should be on sampleID level:

FDN:
 IDN:
 Flag: Entry

Pedigree File

Family meta data file. Records important metrics for tracking samples and find biases in
isolation of DNA or subsequent sequence analysis.

Among other things, the file enables:

	Automatic coverage specification (correct target file(s))

	Application of mendelian filtering models, e.g. autosomal dominant, based on pedigree, sex and disease status

	Collection of analysis info for the sequence analysis pipeline

The pedigree file format is defined by PLINK [http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml], although we currently only support tab-sep pedigree files.

The first row should start with a “#” (hash) and contain relevant headers separated by tabs describing each column.
The first six columns are mandatory. The name and order of the headers should follow:

Mandatory Columns

	ColumnName
	Type
	Summary

	FamilyID
	String
	Family identification number (mandatory)

	SampleID
	String
	Sample identification number (mandatory)

	Father
	String
	Father identification number (mandatory)

	Mother
	String
	Mother identification number (mandatory)

	Sex
	String
	“1”=male, “2”=female, “other”=unknown (mandatory)

	Phenotype
	String
	“-9”=missing, “0”=missing, “1”=unaffected, “2”=affected

In addition to these mandatory columns we use the pedigree file to record meta data on each individual.
Entries within each column should be separated with ”;” (semi-colon) and entered in consecutive order.
Each individual recorded in the pedigree file is written on one line and a tab should
separate each entry. No individual should be recorded twice. The order of individuals below
the header line does not matter.

If there is no information on the parents or the grandparents they should be encoded as “0”.

An example pedigree file can be found here [https://github.com/henrikstranneheim/MIP/blob/develop/templates/1_pedigree.txt].

On UPPMAX

Note

Changes to the pedigree file format will be recorded in this document.

The pedigree file should named: <FDN>_pedigree.txt.

Additional columns in the pedigree file

	ColumnName
	Default Value
	Type
	Summary

	CMMSID
	Na
	String
	The clinics identification number for the individual

	Tissue_origin
	Na
	String
	Tissue of Isolation (DNA/RNA)

	Isolation_kit
	Na
	String
	Kit used to isolate nucleic acids

	Isolation_date
	Na
	Integer
	Date of performing isolation of nucleic acids

	Isolation_personnel
	Na
	String
	Personnel performing isolation of nucleic acids

	Medical_doctor
	Na
	String
	Responsible clinician(s)

	Inheritance_model
	Na
	String
	Probable disease genetic model inheritance within pedigree

	Phenotype_terms
	Na
	String
	Phenotypic terms associated with the disorder

	CMMS_seqID
	Na
	String
	Batch identification

	SciLifeID
	Na
	String
	ScilifeLab identification

	Capture_kit
	Na
	String
	Capture kit used in library preparation

	Capture_date
	Na
	Integer
	Date of performing capture procedure

	Capture_personnel
	Na
	String
	Personnel performing capture procedure

	Clustering_date
	Na
	Integer
	Date of clustering

	Sequencing_kit
	Na
	String
	Sequencing kit

	Clinical_db
	dbCMMS
	String
	The clinical database

	Clinical_db_gene_annotation
	IEM
	String
	Genes associated with a disease group within the clinical database

Pedigree capture kits aliases

	Agilent Sure Select
	Agilent_SureSelect.V2 => Agilent_SureSelect.V2.GenomeReferenceSourceVersion_targets.bed

	Agilent_SureSelect.V3 => Agilent_SureSelect.V3.GenomeReferenceSourceVersion_targets.bed

	Agilent_SureSelect.V4 => Agilent_SureSelect.V4.GenomeReferenceSourceVersion_targets.bed

	Agilent_SureSelect.V5 => Agilent_SureSelect.V5.GenomeReferenceSourceVersion_targets.bed

	Agilent_SureSelectCRE.V1 => Agilent_SureSelectCRE.V1.GenomeReferenceSourceVersion_targets.bed

	Latest => Agilent_SureSelect.V5.GenomeReferenceSourceVersion_targets.bed

	NimbleGen
	Nimblegen_SeqCapEZExome.V2 => Nimblegen_SeqCapEZExome.V2.GenomeReferenceSourceVersion_targets.bed

	Nimblegen_SeqCapEZExome.V3 => Nimblegen_SeqCapEZExome.V3.GenomeReferenceSourceVersion_targets.bed

Note

You can use other target region files with MIP but then you have to supply the complete filename with ”.bed” ending.

Abbrevations

	Abbreviation
	Explation

	FDN
	Family ID

	CMMSID
	The CMMS sampleID

	CMMS SeqID
	BatchID e.g. WES8

	SciLifeID
	The id tag provided by Science for Life Laboratory

	AR
	Autosomal recessive

	AD
	Autosomal dominant

Individual Identification Number (IDN)

Ensure that each individual are anonymized and unique. The IDN also facilitates tracking
of all operations and analyses performed upon the individual.

Note

Changes to the IDN format will be recorded in this document.

IDN Definition

The IDN consists of a three digits connected by dots and a disease status (DS) letter after
the last digit. The disease status letter can be either an “A” denoting affected subjects
or a “U” denoting unaffected subjects. Each subject can only have 1 IDN
and once set it should never be changed.

	The first digit represents the family identification number (FamilyID/FDN). The two first numbers
,in the first digit, represent the year that the first individual of the family was submitted
to massively parallel sequencing, MPS. The attached year is determined by the first individual
to be submitted to MPS and this year should then be used for all family members irrespective
of how many times a sample or individual is resequenced. This rule is enforced to not create
multiple IDNs for the same individual and to make sure that all family members are grouped
and analyzed in the proper family. The following three numbers are the a continuous number
for each family that has been submitted for the year.

	The second digit represents the generation identification number (GenerationID/GDN) within
that family. The generation with the affected child is the defined as GDN = “I”. Older
generation are numbered in ascending order from GDN I, starting with II. Younger generations
are numbered in descending order from GDN I starting with “N” (=0 in Roman numerals).

	The last digit represents the subject identification number (SubjectID/SDN) within the
family and generation. Male subjects will have odd SDN numbers and female subjects even
numbers. The lowest subject IDs will be given to oldest subject within each family and
generation and then in ascending order (both even and odd numbers are counted). However,
since there can be later additions in the pedigree this is not strictly enforced.

	The letter after the SDN is the disease status (DS) letter, which can be either of two
possible letters. A = affected and U = unaffected.

Example

FamilyID.GenerationID.SubjectID(DS) or FDN.GDN.SDN(DS)

A child in the affected child generation being the second oldest male sibling in family 1
and the first to be submitted to sequencing within the family in 1998 would be written as: 98001-1-3A (Figure 1).

[image: _images/IDN_figur2.png]

The Code

Subroutines

FIDSubmitJob

Handles all communication with SLURM. All jobIDs and SLURM dependencies for all programs
are set and submitted here. Each program in MIP belongs to a “path” and together with the
sampleID and/or familyID creates a chain of dependencies determining the execution order in SLURM.

Paths

The central flow in MIP is called the MAIN path. MIP supports branching from the MAIN
path for both familyIDs and sampleIDs. It is also possible to create completely separate
paths, which are not associated at all with the MAIN path. However, once branched of from
the MAIN path there is currently no support to merge the branch to the trunk (i.e. MAIN path) again.

Each program is supplied with a dependency flag, which determines its dependencies in the path.

Dependency Flags:

-1 = Not dependent on earlier scripts, and are self cul-de-sâcs
0 = Not dependent on earlier scripts
1 = Dependent on earlier scripts (within sampleID_path or familyID_path)
2 = Dependent on earlier scripts (within sampleID_path or familyID_path), but are self cul-de-sâcs.
3 = Dependent on earlier scripts and executed in parallel within step
4 = Dependent on earlier scripts and parallel scripts and executed in parallel within step
5 = Dependent on earlier scripts both family and sample and adds to both familyID and sampleId jobs

Hash

All jobIDs are saved to the jobID hash using $jobID{FAMILYID_PATH}{CHAINKEY}. Only the
last jobID(s) required to set the downstrem dependencies are saved.

Index

krTheme Sphinx Style

This repository contains sphinx styles Kenneth Reitz uses in most of
his projects. It is a derivative of Mitsuhiko’s themes for Flask and Flask related
projects. To use this style in your Sphinx documentation, follow
this guide:

	put this folder as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there.

	add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'flask'

The following themes exist:

	kr

	the standard flask documentation theme for large projects

	kr_small

	small one-page theme. Intended to be used by very small addon libraries.

 _static/FIDsubmit.png
XA Dt

Jobs with no dependencies

Jobs with linear dependencies

Terminal branching jobs

Jobs with linear dependencies
executing in parallel

Jobs depending on parallel
scripts executing in parallel

_static/mip-logo.jpg

_static/comment.png

_static/down.png

_images/FIDsubmit.png
XA Dt

Jobs with no dependencies

Jobs with linear dependencies

Terminal branching jobs

Jobs with linear dependencies
executing in parallel

Jobs depending on parallel
scripts executing in parallel

_images/IDN_figur2.png
Individual Number: Q

Ascending numbers,
oldest individual gets 98001-IlI-1Yy 98001-I11-2U

lowest number. Male

Family Number 3re assigned odd O
\ numbers, female even 98001-1-2u] 98001-11-3U
numberi/

98001-I-3A ®

98001-1-1U 98001-11-3A98001--4A 98001-1-5U

Family Submission Year: 98001-N-1U 98001-N-3U

The first two number represents the

year the first individual was Generation Number:

submitted to MPS and this year Theindexcase . o Status:
should then be used for all family belongs to generation ,_ < o4

; ; I, parents nr |l atiecte
members irrespective of how many ’ ’ U=unaffected

grandparents Il etc.

times a sample or individual is ‘
Any children of

resequenced. Last three numbers

represents the order of submission for generation | are
the year. denoted N, -I etc.

_images/mip-logo.png
MIP

Mutation identification pipeline

_images/MIP_workflow.png
MIP — Mutation Identification Pipeline
Phase 1: MPS Data Processing Phase 2: Variant Discovery & Genotyping Phase 3: Integrative Analysis
Typically by family

Typically by Individual Typically by family

Raw
Sequences
Qc

Mapping &
Coverage

FRmmm—m=————m———
1

1 Option: Merge with
1 previous run

1
Ready BAM

Raw
Sequences

Alignment

Duplicate
Marking

Ready BAM

Output

Local
Realignment

Base Quality
Recalibration

Analysis-
Ready
Reads

Known
Variation

Ind 1..Ind N

Indels
(Small)

Raw
VELELIS

Known
Genotypes

Filtering-
Ready
Variants

Add
Training
>30 Exomes

Rem
Training
>30 Exome:

Variant QC
All & Exome

dbCMMS

Ready VCF

External Data

SNV

VEP/
SnpEFF/
Annovar/
GENMOD

Variant
Ranking

Variant

Candidate
Lists Missing

Coverage
Info

Output

Web-Interface:
Visualization/

Manual Filtering
-

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		Indices and tables

 		MIP - Mutation Identification Pipeline

 		Overview

 		Features

 		Example Usage

 		Getting Started

 		Installation

 		Prerequisites

 		Usage

 		Installation

 		Setup

 		Filename convention

 		Dependencies

 		Databases/References

 		Adding a new program

 		Call DefineParameters

 		Command line arguments in GetOptions

 		if-block run checker in MAIN

 		Custom subroutine

 		a) SBATCH headers

 		b) Figure out i/o files

 		c) Build SBATCH body

 		d) Call FIDSubmitJob

 		Further information

 		Structure

 		mip.pl

 		Sequence QC

 		Alignment

 		BAM file manipulation

 		Coverage QC

 		Variant calling

 		Variant QC

 		Variant Selection

 		Variant annotation

 		Variant evaluation

 		qcCollect.pl

 		covplots_exome.R / covplots_genome.R

 		vcfParser

 		Usage

 		Installation

 		VEP

 		Select Mode

 		Range Annotations

 		QCCollect

 		Usage

 		Installation

 		SetUp

 		score_mip_variants

 		Consequence

 		Frequency

 		Inheritance Model(s)

 		Protein Functional Prediction

 		Variant Quality Filter

 		Conservation

 		Combined Annotation Dependent Depletion (CADD)

 		ClinVar

 		Dynamic Configuration File

 		Pedigree File

 		On UPPMAX

 		Pedigree capture kits aliases

 		Abbrevations

 		Individual Identification Number (IDN)

 		IDN Definition

 		Example

 		The Code

 		Subroutines

 		FIDSubmitJob

_static/mip-logo.png
MIP

Mutation identification pipeline

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

