
MIP_api Documentation
Release 2.0

Måns Magnusson, Robin Andeer

Sep 27, 2017

Contents

1 Overview 3

2 Features 5

3 Example Usage 7

4 Getting Started 9
4.1 Installation . 9
4.2 Prerequisites . 9
4.3 Usage . 9

5 Installation 13

6 Setup 15
6.1 Filename convention . 15
6.2 Dependencies . 15

7 Adding a new program 19
7.1 Call DefineParameters . 19
7.2 Command line arguments in GetOptions . 20
7.3 if-block run checker in MAIN . 21
7.4 Custom subroutine . 21
7.5 Further information . 24

8 Structure 25
8.1 mip.pl . 25
8.2 Sequence QC . 25
8.3 Alignment . 25
8.4 BAM file manipulation . 25
8.5 Coverage QC . 26
8.6 Variant calling . 26
8.7 Variant QC . 26
8.8 Variant Selection . 26
8.9 Variant annotation . 26
8.10 Variant evaluation . 26
8.11 qcCollect.pl . 26
8.12 covplots_exome.R / covplots_genome.R . 26

i

9 vcfParser 27
9.1 Usage . 27
9.2 Installation . 27

10 QCCollect 29
10.1 Usage . 29
10.2 Installation . 29
10.3 SetUp . 29

11 score_mip_variants 31
11.1 Consequence . 31
11.2 Frequency . 32
11.3 Inheritance Model(s) . 33
11.4 Protein Functional Prediction . 33
11.5 Variant Quality Filter . 34
11.6 Conservation . 34
11.7 Combined Annotation Dependent Depletion (CADD) . 34
11.8 ClinVar . 35

12 Dynamic Configuration File 37

13 Pedigree File 39
13.1 On UPPMAX . 40
13.2 Abbrevations . 41

14 Individual Identification Number (IDN) 43
14.1 IDN Definition . 43

15 The Code 45
15.1 Subroutines . 45

16 Indices and tables 47

ii

MIP_api Documentation, Release 2.0

Release 2.0.

MIP is a pipeline for clinical analysis of whole exome and whole genome sequence data.

Contents:

MIP enables identification of potential disease causing variants from sequence data.

Contents 1

https://github.com/henrikstranneheim/MIP

MIP_api Documentation, Release 2.0

2 Contents

CHAPTER 1

Overview

MIP performs whole genome or target region analysis of sequenced single-end and/or paired-end reads from the
Illumina plattform in fastq(.gz) format to generate annotated ranked potential disease causing variants. MIP performs
QC, alignment, coverage analysis, variant discovery and annotation, sample checks as well as ranking the found
variants according to disease potential with a minimum of manual intervention. MIP is compatible with Scout for
visualization of identified variants.

3

https://github.com/Clinical-Genomics/scout

MIP_api Documentation, Release 2.0

4 Chapter 1. Overview

CHAPTER 2

Features

• Autonomous

– Checks that all dependencies are fulfilled before launching

– Builds/downloads references and/or files lacking before launching

– Splits and merges files for samples and families when relevant

• Automatic

– A minimal amount of hands-on time

– Tracks and executes all module without manual intervention

– Creates internal queues at nodes to optimize processing

– Minimal IO between nodes and login node

• Flexible:

– Design your own workflow by turning on/off relevant modules

– Restart an analysis from anywhere in your workflow

– Process one, or multiple samples using the module(s) of your choice

– Supply parameters on the command line, in a pedigree file or via config files

– Simulate your analysis before performing the actual analysis

– Redirect each modules analysis process to a temporary directory (@nodes or @login)

– Limit a run to a specific set of genomic intervals

• Fast

– Analyses an exome trio in approximately 6 h

– Rapid mode analyzes a WGS sample in approximately 4 h using a data reduction and parallelization
scheme

• Traceability

5

MIP_api Documentation, Release 2.0

– Recreate your analysis from the MIP log

– Logs sample meta-data and sequence meta-data

– Logs version numbers of softwares and databases

• Standardized

– Use standard formats whenever possible

• Visualization

– Output is directly compatibel with Scout

6 Chapter 2. Features

CHAPTER 3

Example Usage

perl mip.pl -pMosaikBuild 0 -configFile 1_config.yaml

7

MIP_api Documentation, Release 2.0

8 Chapter 3. Example Usage

CHAPTER 4

Getting Started

Installation

MIP is written in Perl and therfore requires that Perl is installed on your OS (See Installation).

Prerequisites

MIP will only require prerequisites when processing a modules that has dependencies (See Setup). However, some
frequently used sequence manipulation tools e.g. samtools, PicardTools, Bedtools are probably good to have in your
path.

Meta-Data

Meta data regarding the pedigree, gender and phenotype should be supplied for the analysis.

• Pedigree file (PLINK-format; See Pedigree File & MIP´s github repository).

• Configuration file (YAML-format; See Dynamic Configuration File & MIP´s github repository).

Usage

MIP is called from the command line and takes input from the command line (precedence), a config file (yaml-format)
or falls back on defaults where applicable.

Lists are supplied as comma separated input, repeated flag entries on the command line or in the config using the yaml
format for arrays.

Note: List or repeated entries need to be submitted with the same order for each element across all supplied lists.

9

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml
https://github.com/henrikstranneheim/MIP/tree/master/templates
http://www.yaml.org/
https://github.com/henrikstranneheim/MIP/tree/master/templates

MIP_api Documentation, Release 2.0

Only flags that will actually be used needs to be specified and MIP will check that all required parameters and depen-
dencies (for these flags only) are set before submitting to SLURM.

Program parameters always begins with “p” followed by a capital letter. Program parameters can be set to “0” (=off),
“1” (=on) and “2” (=dry run mode). Any program can be set to dry run mode and MIP will create sbatch scripts,
but not submit them to SLURM for these modules. MIP can be restarted from any module, but you need to supply
previous dependent programs in dry run mode to ensure proper file handling.

MIP will overwrite data files when reanalyzing, but keeps all “versioned” sbatch scripts for traceability.

MIP allows individual target file calculations if supplied with a pedigree file or config file containing the supported
capture kits for each sample.

You can always supply perl mip.pl -h to list all available parameters and defaults.

Example usage:

$ perl mip.pl -f 3 -sampleid 3-1-1A,3-2-1U -sampleid 3-2-2U -pFQC 0 -pMosaikBuild 2 -
→˓pMosaikAlign 2 -c 3_config.yaml

This will analyze family 3 using three individuals from that family and begin the analysis with programs after Mo-
saikAlign and use all parameter values as specified in the config file, except those supplied on the command line, which
has precedence.

Input

MIP requires the input Fastq files to follow a naming convention to accurately and automatically handel individual
runs and lanes (See Setup).

Fastq files (gziped/uncompressed) should be place within the -inFilesDirs.

Note: MIP will automatically compress any non gzipped files if -pGZip is enabled. All files ending with .fastq or
.fast.gz will be included in the run.

All MIP scripts (including mip.pl) should be placed in the script directory specified by -inScriptDir.

All references and template files should be placed directly in the reference directory specified by -referencesDir,
except for ANNOVAR db files, which should be located in annovar/humandb.

Output

Analyses done per individual is found under respective sampleID subdirectory and analyses done including all samples
can be found under the family directory.

Sbatch Scripts

MIP will create sbatch scripts (.sh) and submit them in proper order with attached dependencies to SLURM. These
sbatch script are placed in the output script directory specified by -outScriptDir. The sbatch scripts are versioned
and will not be overwritten if you begin a new analysis. Versioned “xargs” scripts will also be created where possible
to maximize the use of the cores procecessing power.

Data

MIP will place any generated datafiles in the output data directory specified by -outDataDir. All datatfiles are
regenerated for each analysis. STDOUT and STDERR for each program is written in the <program>/info directory
prior to alignment and in the <aligner>/<program>info directory post alignment.

Analysis Types

Currently, MIP handles WES -at exomes, WGS -at genomes or Rapid analysis -at rapid for acute pa-
tient(s).

10 Chapter 4. Getting Started

MIP_api Documentation, Release 2.0

The rapid analysis requires BWA_MEM and selects the data that overlaps with the regions supplied with the
-bwamemrdb flag. MIP will automatically detect if the sequencing run is single-end or paired-end and the length of
the sequences and automatically adjust accordingly.

Note: In rapid mode; Sort and index is done for each batch of reads in the BWA_Mem call, since the link to infile
is broken by the read batch processing. However pPicardToolsSortSam should be enabled to ensure correct
fileending and merge the flow to ordinary modules.

Project ID

The -projectID flag sets the account to which core hours will be allocated in SLURM.

Aligner

Currently MIP officially supports two aligners Mosaik and BWA, but technically supports any aligner that outputs
BAM files. Follow the instructions in Adding a new program to add your own favorite aligner.

Log

MIP will write the active analysis parameters and STDOUT to a log file located in:
{OUTDIRECTORY}{FAMILYID}/{MIP_LOG}/{SCRIPTNAME_TIMESTAMP}

Information, such as infile, programs, outdatafiles etc, for each analysis run is dynamically recorded in the a yaml
file determined by the -sampleInfoFile flag. Information in the sampleInfo file will be updated in each analysis
run if identical records are present and novel entries are added. The sampleInfo file is used in QCCollect to extract
relevant qc metrics from the MPS analysis.

Pipeline WorkFlow

This is an example of a workflow that MIP can perform (used @CMMS).

4.3. Usage 11

https://github.com/wanpinglee/MOSAIK
http://bio-bwa.sourceforge.net/

MIP_api Documentation, Release 2.0

12 Chapter 4. Getting Started

CHAPTER 5

Installation

1. Install a fresh copy of Perl

On UNIX, Perl5 can be installed by following these instructions. It uses Perlbrew.

2. To switch to the new Perl installation, you might need to run:

$ INSTALLER_PERL_VERSION=5.16.0
$ perlbrew switch perl-$INSTALLER_PERL_VERSION

3. “Install” MIP

clone the official git repository
$ git clone https://github.com/henrikstranneheim/MIP.git
$ cd MIP
$ perl mip.pl -h

After this you can decide whether to make MIP an “executable” by either adding the install directory to
the $PATH in e.g. “~/.bash_profile” or move all the files from this directory to somewhere already
in your path like “~/usr/bin”. Remember to make the file(s) executable by chmod +x file.

4. Dependencies

You need to make sure all depedencies are installed and loaded (See Setup). However, MIP should tell
you if something is missing.

5. To install the dependencies - use cpanm:

cpanm <dependency>
$ cpanm YAML

13

http://learn.perl.org/installing/unix_linux.html
http://perlbrew.pl/

MIP_api Documentation, Release 2.0

14 Chapter 5. Installation

CHAPTER 6

Setup

Filename convention

The permanent filename should follow the following format:

{LANE}_{DATE}_{FLOW CELL}_{IDN}_{BARCODE SEQ}_{DIRECTION 1/2}.fastq.qz

Note: The familyID and sampleID(s) needs to be unique and the sampleID supplied should be equal to the {IDN} in
the filename.

Dependencies

Make sure you have loaded/installed all dependencies and that they are in your $PATH. You only need to load the
dependencies that are required for the modules that you want to run. If you fail to install dependencies for a module,
MIP will tell you what dependencies you need to install (or add to your $PATH) and exit. Version after the software
name are tested for compatibility with MIP.

Program/Modules

• Perl YAML.pm module and Log::Log4perl.pm since this is not included in the Perl standard distribution

• Simple Linux Utility for Resource Management (SLURM)

• FastQC (version: 0.11.2)

• Mosaik (version: 2.2.24)

• BWA (version: 0.7.10)

• SAMTools (version: 1.1)

• BedTools (version: 2.20.1)

15

http://search.cpan.org/~mstrout/YAML-0.84/lib/YAML.pm
http://search.cpan.org/~mschilli/Log-Log4perl-1.46/lib/Log/Log4perl.pm
http://slurm.schedmd.com/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/wanpinglee/MOSAIK
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://bedtools.readthedocs.org/en/latest/

MIP_api Documentation, Release 2.0

• PicardTools (version: 1.125)

• Chanjo (version: 2.3.0)

• GATK (version: 3.3-0)

• VEP (version: 76)

• vcfParser.pl (Supplied with MIP; see vcfParser)

• SnpEff (4.0)

• ANNOVAR (version: 2013-08-23)

• GENMOD (version: 1.7.7)

• Score_mip_variants (version: 0.5.4)

• VcfTools (version: 0.1.12b)

• PLINK (version: 1.07)

Depending on what programs you include in the MIP analysis you also need to add these programs to your $PATH:

• FastQC

• Mosaik

• BWA

• SAMTools

• Tabix

• BedTools

• VcfTools

• PLINK

and these to your python virtualenvironment:

• Chanjo

• GENMOD

• Score_mip_variants

• Cosmid (version: 0.4.9.1) for automatic download

To make sure that you use the same commands to work on the virtualenvironment, you need to install a virtual
environment wrapper. We recommend pyenv and pyenv-virtualenvwrapper. To enable the virualenvwrapper add:
pyenv virtualenvwrapper to your ~/.bash_profile.

Databases/References

Please checkout Cosmid to download references and/or databases on your own or via MIP.

MIP can build/download many program prerequisites automatically:

Note: Download is only enabled when using the default parameters of MIP and requires a Cosmid installation in your
python virtualenvironment.

Automatic Download:

1. Human Decoy Genome Reference (1000G)

16 Chapter 6. Setup

http://picard.sourceforge.net/
https://chanjo.readthedocs.org/en/latest/
http://www.broadinstitute.org/gatk/
http://www.ensembl.org/info/docs/tools/vep/index.html
http://snpeff.sourceforge.net/
http://www.openbioinformatics.org/annovar/
https://github.com/moonso/genmod/
https://github.com/moonso/score_mip_variants
http://vcftools.sourceforge.net/
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml
https://github.com/robinandeer/cosmid
https://github.com/yyuu/pyenv
https://github.com/yyuu/pyenv-virtualenvwrapper
https://github.com/robinandeer/cosmid

MIP_api Documentation, Release 2.0

2. The Consensus Coding Sequence project database (CCDS)

3. Relevant references from the 1000G FTP Bundle (mills, omni, dbsnp etc)

Automatic Build:

Human Genome Reference Meta Files:

1. The sequence dictionnary (”.dict”)

2. The ”.fasta.fai” file

Mosaik:

1. The Mosaik align format of the human genome {mosaikAlignReference}.

2. The Mosaik align jump database {mosaikJumpDbStub}.

3. The Mosaik align network files {mosaikAlignNeuralNetworkPeFile} and {mosaikAlignNeuralNetwork-
SeFile}. These will be copied from your MOSAIK installation to the MIP reference directory.

BWA:

1. The BWA index of the human genome.

Note: If you do not supply these parameters (Mosaik/BWA) MIP will create these from scratch using the supplied
human reference genom as template.

Capture target files:

1. The “infile_list” and .pad100.infile_list files used in {pPicardToolsCalculateHSMetrics}

2. The ”.pad100.interval_list” file used in by some GATK modules.

Note: If you do not supply these parameters MIP will create these from scratch using the supplied latest supported
capture kit ”.bed” file and the supplied human reference genome as template.

ANNOVAR: The choosen Annovar databases are downloaded before use if lacking in the annovar/humandb directory
using Annovars built-in download function.

Note: This applies only to the supported annovar databases. Supply flag “–annovarSupportedTableNames 1” to list
the MIP supported databases.

6.2. Dependencies 17

MIP_api Documentation, Release 2.0

18 Chapter 6. Setup

CHAPTER 7

Adding a new program

You need to perform a series of tasks to properly add a program to MIP. An overview of the steps can be found here:

1. Call DefineParameters

2. Command line arguments in GetOptions

3. if-block run checker in MAIN

1. Print program name to MIPLOGG and STDOUT

2. Call your custom subroutine (ses below) with relevant parameters

4. Custom subroutine

1. Writes SBATCH headers

2. Figure out i/o files

3. Builds out the body of the SBATCH script

4. Calls FIDsubmitJob

More details follow below. Chanjo, a program which is part of the coverage analysis, will be used as an example.

Call DefineParameters

This subroutine takes a number of input parameters. There are basically three parameter types: “program”, “file”, and
“attribute”. Try to group your parameter definitions with related programs.

DefineParameters("pChanjoBuild", "program", 1, "MIP", 0, "nofileEnding",
→˓"CoverageReport");

DefineParameters("chanjoBuildDb", "path", "CCDS.current.txt", "pChanjoBuild", "file");

DefineParameters("pChanjoCalculate", "program", 0, "MIP", 0, "nofileEnding", "MAIN");

DefineParameters("chanjoCalculateCutoff", "program", 10, "pChanjoCalculate", 0)

19

https://chanjo.readthedocs.org/en/latest/

MIP_api Documentation, Release 2.0

Table 7.1: DefineParameters - parameters

Parameter Example Description
Name pChan-

joBuild
Program names start with ‘p’ by convention, otherwise it’s up to you.

Type program Can be either program or path.
Default 1 Program: 1/0 as on/off, file: <path to file> or ‘nodefault’, attribute: e.g 10 or

‘nodefault’
Associated
program

MIP Typically the program that calls this program. program: usually MIP,
file/attribute: <Name>.

Exists check 0 Perform a check that a file is in the reference directory. Either: 0, ‘file’, ‘directory’.
File ending nofileEnd-

ing
File ending when module is finished. MIP uses this to determine input files
downstream in the Chain. file/attribute: skip.

Chain MAIN The chain to which the program belongs to. file/attribute: skip.
Check install chanjo The program handle to check whether it is in the $PATH. file/attribute: skip.

Command line arguments in GetOptions

This is the method that parses the command line input and stores the options. To add your own defined parameters
you need to add lines like this:

'<short_option>|<long_option>:<s(tring)/n(umber)>' => \$parameter{'<long_option>'}{
→˓'value'},

You should replace anything that looks like <placeholder>:

'pCh|pChanjoBuild:n' => \$parameter{'pChanjoBuild'}{'value'}, # ChanjoBuild coverage
→˓analysis
'chbdb|chanjoBuildDb:s' => \$parameter{'chanjoBuildDb'}{'value'}, # Central SQLite
→˓database path
'pCh_C|pChanjoCalculate:n' => \$parameter{'pChanjoCalculate'}{'value'}, # Chanjo
→˓coverage analysis
'chccut|chanjoCalculateCutoff:n' => \$parameter{'chanjoCalculateCutoff'}{'value'}, #
→˓Cutoff used for completeness

Again, program options begin with a leading “p” by convention. Make sure you don’t cause any naming conflicts.

Lists can also be specified with a special syntax. Basically you need to assign the option to an array instead of
$scriptParameters.

'ifd|inFilesDirs:s' => \@inFilesDirs, #Comma separated list

Later in your code when you would like to access those values you would join on ”,”.

@inFilesDirs = join(',', @inFilesDirs);

Note: MIP doesn’t use True/False flags, all options take at least one argument. For program options it’s possible to
turn on (1), off (0) and run programs in dry mode (2). All program options should specify “n(umber)” as argument
type.

20 Chapter 7. Adding a new program

MIP_api Documentation, Release 2.0

if-block run checker in MAIN

The if-block checks whether the program is set to run but it also has a number of additional responsibilities.

Perhaps the most important is to define dependencies. This is done by placing your if-statement after the closest
upsteam process to yours. ChanjoBuild, for example, needs to wait until PicardToolsMarkDuplicates has finished
processing the BAM-files before running.

Closest upsteam dependency for Chanjo
if ($scriptParameter{'pPicardToolsMarkduplicates'} > 0) {

Body...
}

This is where Chanjo fits!
if ($scriptParameter{'pChanjoBuild'} > 0) {

Body...
}

Next (inside the if-block) it should print an announcement to two file handles:

for my $fh (STDOUT, MIPLOGG) { print $fh "\nChanjoBuild\n"; }

Lastly it should call a Custom subroutine, e.g. for each individual sample or per family, which will write a SBATCH
script(s), submit them to SLURM, which executes the module.

Note: $sampleInfo is a hash table storing sample information, for example filename endings from different stages
of the pipeline. It’s used to determine input filenames for your program.

Custom subroutine

First up, let’s choose a relevant (and conflict free) name for our subroutine.

sub ChanjoBuild {
Body...

}

If we pass ALL nessesary variables into the subroutine and assign them as scoped variables it’s easy to overview
variables used inside.

my $sampleID = $_[0];
my $familyID = $_[1];
my $aligner = $_[2];
etc ...

a) SBATCH headers

SBATCH headers are written by the ProgramPreRequisites subroutine. It takes a number of input arguments.

ProgramPreRequisites($sampleID, "ChanjoBuild", "$aligner/coverageReport", 0,
→˓*CHANJOBUI, 1, $runtimeEst);

7.3. if-block run checker in MAIN 21

MIP_api Documentation, Release 2.0

Table 7.2: ProgramPreRequisites - paramaters

Parameter Example Description
Directory 11-1-1A Either a sample ID (e.g. IDN) or family ID depending on where output is

stored.
Program chanjo Used in SBATCH script filename.
Program
directory

$aligner/
coverageReport

Defines output directory under Directory. Path should include current
aligner by convention.

Call type 0 Options: SNV, INDEL or BOTH. Can be set to: 0 ???
File handle *CHANJO The program specific file handle which will be written to when generating

the SBATCH script. Always prepend: ‘*’.
Cores 1 The number of cores to allocate.
Process
time

1.5 An estimate of the runtime for the particular sample in hours.

b) Figure out i/o files

It’s up to you to figure out where your program should store output files. Basically you need to ask yourself whether
putting them in the family/sample foler makes the most sense.

It’s a good idea to first specify both in- and output directories.

my $baseDir = "$outDataDir/$sampleID/$aligner";
my $inDir = $baseDir;
my $outDir = "$baseDir/coverageReport";

If you depend on earlier scripts to generate infile(s) for the new program it’s up to you to figure out the closest program
upstream. After that you can ask for the file ending.

my $infileEnding = $sampleInfo{ $familyID }{ $sampleID }{'pPicardToolsMarkduplicates'}
→˓{'fileEnding'};

$sampleInfo is a hash table in global scope.

MIP supports multiple infiles and therefore MIP needs to check if the file(s) have been merge or not.This is done with
the CheckIfMergedFiles subroutine, which returns either a 1 (files was merged) or 0 (no merge of files)

my ($infile, $mergeSwitch) = CheckIfMergedFiles($sampleID);

Note: $infilesLaneNoEnding is a global hash table containing information about the filename-bases (compare
filename-endings).

c) Build SBATCH body

This is where you fit relevant parameters into your command line tool interface. Print everything to the file handle you
defined above.

print CHANJOBUI "
--
Create a temp JSON file with exon coverage annotations
--\n";
print CHANJOBUI "chanjo annotate $storePath using $bamFile";

22 Chapter 7. Adding a new program

MIP_api Documentation, Release 2.0

print CHANJOBUI "--cutoff $cutoff";
print CHANJOBUI "--sample $sampleID";
print CHANJOBUI "--group $familyID";
print CHANJOBUI "--json $jsonPath";

I'm done printing; let's drop the file handle
close(CHANJOBUI);

Note: A wait command should be added after submitting multiple processes in the same SBATCH script with the &
command. This will ensure SLURM waits for all processes to finish before quitting on the job.

d) Call FIDSubmitJob

This subroutine is responsible for actually submitting the SBATCH script and handling dependencies. You should
only call this if the program is supposed to run for real (not dry run).

if (($runMode == 1) && ($dryRunAll == 0)) {
ChanjoBuild is a terminally branching job: linear dependencies/no follow up
FIDSubmitJob($sampleID, $familyID, 2, $parameter{'pChanjoBuild'}{'chain'},

→˓$filename, 0);
}

Table 7.3: FIDSubmitJob - paramaters

Parameter Example Description
Sample ID 11-1-1A The sample ID/person IDN
Family ID 11 The family ID
Dependency
type

2 Choose between type 0-4 (see below)

Chain key $parame-
ter{‘pChanjo’}{‘chain’}

The chain defined in DefineParameters

SBATCH
filename

$filename Always use this variable. It automagically points to your
SBATCH script file.

Script tracker 0 Huh? Something about parallel processes...

To figure out which option (integer) to supply as the third argument to FIDSubmitJob you can take a look at this
illustration.

7.4. Custom subroutine 23

MIP_api Documentation, Release 2.0

Note: $filename is a variable that is created in ProgramPreRequisites. It points to your freshly composed
SBATCH script file and should be supplied to FIDSubmitJob by all custom subroutines.

Note: $parameter{'pChanjoBuild'}{'chain'} is just the chain that you set in DefineParameters. In this
case we could’ve replaced it with “MAIN”.

Further information

For your convinience a template program module can be found in the project folder hosted on GitHub. [ADD LINK
TO TEMPLATE]

24 Chapter 7. Adding a new program

CHAPTER 8

Structure

mip.pl

Central hub and likely the only script most users will ever interact directly with.

$ echo "Running MIP on Uppmax, analyzing all samples in family 10"
$ mip.pl -c CMMS_Uppmax_config.yaml -f 10

Sequence QC

Raw sequence quality control: FastQC

Alignment

Currently MIP supports these aligners:

1. Mosaik (WES, WGS)

2. BWA (WES, WGS, Rapid WGS)

BAM file manipulation

• Sorting and indexing: PicardTools (SortSam)

• Duplicate marking: PicardTools (MarkDuplicates)

• Realignment and base recalibration: GATK (Realigner & BaseRecalibration)

25

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/wanpinglee/MOSAIK
http://bio-bwa.sourceforge.net/
http://picard.sourceforge.net/
http://picard.sourceforge.net/
http://www.broadinstitute.org/gatk/

MIP_api Documentation, Release 2.0

Coverage QC

• Coverage Report and QC metrics: Chanjo & BedTools

• QC metrics: PicardTools (MultipleMetrics & HSmetrics)

Variant calling

• Variant discovery and recalibration: GATK (HaploTypeCaller, GenoTypeGVCFs & VariantRecalibration)

Variant QC

• All variants: GATK (VariantEval)

• Exonic variants: GATK (VariantEval)

Variant Selection

Select transcripts that overlap a gene list: vcfParser

Variant annotation

Collect transcript and amino acid information and information from external databases as well as annotation of inher-
itance models: VEP, vcfParser, SnpEff, ANNOVAR, GENMOD

Variant evaluation

Score and rank each variant using weighted sums according to disease causing potential: Score_mip_variants (see
score_mip_variants)

qcCollect.pl

Collects QC data from the MPS analysis in YAML format. (see QCCollect).

covplots_exome.R / covplots_genome.R

Plots coverage across chromosomes.

26 Chapter 8. Structure

https://chanjo.readthedocs.org/en/latest/
http://bedtools.readthedocs.org/en/latest/
http://picard.sourceforge.net/
http://www.broadinstitute.org/gatk/
http://www.broadinstitute.org/gatk/
http://www.broadinstitute.org/gatk/
http://www.ensembl.org/info/docs/tools/vep/index.html
http://snpeff.sourceforge.net/
http://www.openbioinformatics.org/annovar/
https://github.com/moonso/genmod/
https://github.com/moonso/score_mip_variants

CHAPTER 9

vcfParser

Parses vcf files to reformat/add INFO fields and metaData headers and/or select entries belonging to a subgroup e.g. a
list of genes. Input can be piped or supplied as an infile.

Usage

vcfParser.pl infile.vcf > outfile.vcf

vcfParser.pl infile.vcf --parseVEP 1 -rf External_Db.txt -rf_ac 3 -sf genes.
v1.0.txt -sf_mc 3 -sf_ac 3,4,11,15,17,20 -sof selected_genes.vcf > outfile.vcf

Installation

vcfParser is written in Perl, so naturally you need to have Perl installed. The perl module Set::IntervalTree is required
and are used to add “ranged” annotations.

VEP

Parses the output from VEP to include RefSeq transcripts. The transcript and protein annotations, moste severe
consequence and gene annotations are also included in the output . Transcript protein predictions (Sift and Polyphen)
can also be included.

Select Mode

A list of genes and their corresponding HGNC Symbol can be used to fork the analysis into “selected” genes and
“orphan” genes.

27

https://metacpan.org/pod/Set::IntervalTree

MIP_api Documentation, Release 2.0

GuideLines on format for database of genes

• The database file should contain a header line starting with “#”.

• The number of headers should match the number of field elements for each entry.

• Do not use whitespace in headers.

• Do not use ”;” in file.

• Separate elements in fields with ”,”. Do not use ”, ”.

• No whitespace in the beginning or end within fields.

• No entries should be duplicated within database.

• Length of gene coordinates should be greater than 0

• Only digits in gene coordinate entries

Range Annotations

vcfParser can also add range annotations to the vcf by using the Set::IntervalTree perl cpan module and a file with
chromosomal coordinates and features to be annotated.

28 Chapter 9. vcfParser

https://metacpan.org/pod/Set::IntervalTree

CHAPTER 10

QCCollect

Collects information on MPS analysis from each analysis run. Uses YAML files for input and output. QCCollect uses
a yaml file for matching the outdata produced in each run to another yaml file with regular expression used to actually
collect the data from the output files. The collected data is then written to disc in yaml format.

MIP produces a sampleInfo yaml file, containing all sample and family information used in each analysis run.

Usage

perl qcCollect.pl -si [SampleInfoFilePath] -r [regularExpressionFilePath] -o
[Outfile]

Installation

qcCollect is written in Perl, so naturally you need to have Perl installed.

SetUp

1. The regular expression file needs to be created. The regExp file used at CMMS can be printed from qcCollect using
the -preg & -prego flags

29

MIP_api Documentation, Release 2.0

Table 10.1: qcCollect Parameters

Short/Long Default Value Type Summary
-si/–sampleInfoFile Na String The sample info file (Yaml;supply whole path)
-r/–regExpFile Na String The regular expresion file (Yaml;supply whole

path)
-o/–outfile “qcmetrics.yaml” String The output file
-preg/–printRegExp 0 Integer Print RegExp YAML file used at CMMS switch
-prego/–
printRegExpOutFile

“qc_regExp.yaml” String The RegExp YAML outfile

-h/–help Na Na Display help message
-v/–version Na Na Display version

30 Chapter 10. QCCollect

CHAPTER 11

score_mip_variants

Score_mip_variants uses the weighted sum model (WSM) approach to rank the most likely pathogenic variant.

Generally, the higher value the more likely pathogenic variant.

Score_mip_variants uses config files to define the rank model, which enables customized set-up and versioning of rank
models.

The WSM uses the following alternatives and weights in rank model “gm_cmms_v1.2”:

Rank score range: -25 <= rs <= 21

Consequence

Each alleles variant effect on individual transcripts are evaluated using a rule-based approach defined by SO-terms. The
SO-terms themselves are ranked in order of severity and this ranking is used to defined the weight of the consequence
alternative. The performance score is based on the most severe consequence within each gene.

Performance value for the SO-terms:

• transcript_ablation = 5

• splice_donor_variant = 4

• splice_acceptor_variant = 4

• stop_gained = 4

• frameshift_variant = 4

• stop_lost = 4

• initiator_codon_variant = 4

• inframe_insertion = 3

• inframe_deletion = 3

• missense_variant = 3

31

http://en.wikipedia.org/wiki/Weighted_sum_model
http://www.sequenceontology.org/

MIP_api Documentation, Release 2.0

• transcript_amplification = 3

• splice_region_variant = 3

• incomplete_terminal_codon_variant = 3

• synonymous_variant = 1

• stop_retained_variant = 1

• coding_sequence_variant = 1

• mature_miRNA_variant = 1

• 5_prime_UTR_variant = 1

• 3_prime_UTR_variant = 1

• non_coding_exon_variant = 1

• nc_transcript_variant = 1

• intron_variant = 1

• NMD_transcript_variant = 1

• upstream_gene_variant = 1

• downstream_gene_variant = 1

• TFBS_ablation = 1

• TFBS_amplification = 1

• TF_binding_site_variant = 1

• regulatory_region_variant = 1

• regulatory_region_ablation = 1

• regulatory_region_amplification = 1

• feature_elongation = 1

• feature_truncation = 1

• intergenic_variant = 0

Frequency

The alternative allele frequency (AF) in public databases (1000G, ExAC). The highest reported alternative frequency
reported from the databases is used to calculate the performance value.

Definitions:

• Not reported: AF Na

• Rare: AF <= 0.005

• Intermediate: 0.005 <= AF <= 0.02

• Common: AF > 0.02

Performance value for maximum AF:

• Not reported = 3

• Rare = 2

32 Chapter 11. score_mip_variants

http://www.1000genomes.org/
http://exac.broadinstitute.org/about

MIP_api Documentation, Release 2.0

• Intermediate = 1

• Common = -12

Inheritance Model(s)

The segregation pattern for the variant within the family. These models are currently annotated using genmod.

Definitions:

• Autsomal Recessive, denoted ‘AR_hom’

• Autsomal Recessive denovo, denoted ‘AR_hom_dn’

• Autsomal Dominant, ‘AD’

• Autsomal Dominant denovo, ‘AD_dn’

• Autosomal Compound Heterozygote, ‘AR_comp’

• X-linked dominant, ‘XD’

• X-linked dominant de novo, ‘XD_dn’

• X-linked Recessive, ‘XR’

• X-linked Recessive de novo, ‘XR_dn’

Performance value for inheritance models:

• Valid model = 1

• No model = -12

Protein Functional Prediction

The predicted functional effect on the protein. Currently 2 protein effect predictors are used (Sift, PolyPhen2). Each
predictors can contribute 1 point each to the overall protein predictor performance score.

SIFT predicts whether an amino acid substitution is likely to affect protein function based on sequence homology and
the physico-chemical similarity between the alternate amino acids [1].

PolyPhen-2 predicts the effect of an amino acid substitution on the structure and function of a protein using sequence
homology, Pfam annotations, 3D structures from PDB where available, and a number of other databases and tools
(including DSSP, ncoils etc [2].

Definitions:

• Sift Terms:

– “D” Deleterious (score<=0.05)

– “T” Tolerated (score>0.05)

• PolyPhen2HumVar Terms:

– “D”: Probably damaging (>=0.909)

– “P”: Possibly damaging (0.447<=pp2_hvar<=0.909)

– “B”: Benign (pp2_hvar<=0.446)

Performance value for protein predictors:

11.3. Inheritance Model(s) 33

https://github.com/moonso/genmod
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.ncbi.nlm.nih.gov/pubmed/?term=22689647
http://www.ncbi.nlm.nih.gov/pubmed/?term=20354512
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction

MIP_api Documentation, Release 2.0

• Sift:

– D = 1

• PolyPhen2HumVar:

– D or P = 1

Variant Quality Filter

Each variant call has a filter tranche attached to it indicating the quality of the actual variant call.

Definitions:

• PASS

• Other (Tranches e.g. For GATK [3]: “VQSRTrancheBOTH99.90to100.00”

Performance value for variant quality filter:

• PASS = 3

• Other = 0

Conservation

The level of conservation for a sequence element (PhastCons [4]), nucleotides or classes of nucleotides PhyloP [5]
both from the Phast [6] package as well as genomic constraint score GERP [7] is used. The Phast datasets used in
the conservation calculation were generated by the UCSC/Penn State Bioinformatics comparative genomics alignment
pipeline. A description of this analysis can be found at UCSC. Each type of conservation can contribute 1 point each
to the overall conservation performance score.

Definitions:

• Conserved

– PhastCons: 0.8 >= Score <= 1

– GERPRS: Score >= 2

– PhyloP: Score > 2,5

Performance value for conservation:

• Conserved:

– PhastCons = 1

– PhyloP = 1

– GERP = 1

Combined Annotation Dependent Depletion (CADD)

CADD is a tool for scoring the deleteriousness of single nucleotide variants as well as insertion/deletions variants in the
human genome. C-scores strongly correlate with allelic diversity, pathogenicity of both coding and non-coding vari-
ants, and experimentally measured regulatory effects, and also highly rank causal variants within individual genome
sequences. The CADD-score is a pre-calculated for all SNVs and for indel from 1000G-project [8].

34 Chapter 11. score_mip_variants

http://www.ncbi.nlm.nih.gov/pubmed?term=20644199
http://compgen.bscb.cornell.edu/phast/help-pages/phastCons.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=16024819
http://compgen.bscb.cornell.edu/phast/help-pages/phyloP.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=14660683
http://compgen.bscb.cornell.edu/phast/
http://www.ncbi.nlm.nih.gov/pubmed/?term=21278375
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.ncbi.nlm.nih.gov/pubmed/?term=15965027
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way
http://cadd.gs.washington.edu/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24487276

MIP_api Documentation, Release 2.0

Definitions:

• Deleterious (CADD > 20)

• Mildly deleterious (CADD > 10)

Performance value for CADD: - Deleterious = 2 - Mildly deleterious = 1

ClinVar

ClinVar [9] is a freely accessible, public archive of reports of the relationships among human variations and pheno-
types, with supporting evidence.

Definitions:

• Uncertain significance = 0

• Not provided = 1

• Benign = 2

• Likely benign = 3

• Likely pathogenic = 4

• Pathogenic = 5

• Drug response = 6

• Histocompatibility = 7

• Other = 255

Performance value for ClinVar:

• Uncertain significance = 0

• Not provided = 0

• Benign = -1

• Likely benign = 0

• Likely pathogenic = 1

• Pathogenic = 2

• Drug response = 0

• Histocompatibility = 0

• Other = 0

11.8. ClinVar 35

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24234437

MIP_api Documentation, Release 2.0

36 Chapter 11. score_mip_variants

CHAPTER 12

Dynamic Configuration File

MIP uses dynamic configuration files in YAML format to load parameters for each analysis run. An example configu-
ration file can be found here.

To facilitate using different clusters, projects and tailoring the MIP analysis to each run without having to create
new configuration files each time you can supply a cluster/project specifc configuration file. Certain paths in the
configuration file information will be updated to the current analysis when MIP executes.

This requires that these two entries are added to the configuration file:

1. ‘clusterConstantPath: {value}’, specifying the project path.

2. ‘analysisConstantPath: {value}’, specifying the analysis directory.

Entries in the configuration file containing the following “dynamic strings” will be updated in MIP:

• CLUSTERCONSTANTPATH! = ‘clusterConstantPath: {value}’

• ANALYSISCONSTANTPATH! = ‘analysisConstantPath: {value}’

• ANALYSISTYPE! = ‘analysisType: {value}’

• FDN! = ‘-f familyID’ (from command line)

• IDN! = ‘-s sampleIDs’ (from command line), configuration file or supplied pedigree file

For instance, the pedigree file entry in the configuration file can be supplied like this:

‘pedigreeFile: CLUSTERCONSTANTPATH!/ANALYSISTYPE!/FDN!/FDN!_pedigree.txt’

and each path element will be replaced with the corresponding value as specified in the configuration file, command
line (precedence) or pedigree file.

Note: Any entries not containing “dynamic strings” will not be modified by MIP.

Both updated and constant entries will be written to the analysis specific folder if specified by ‘-wc’.

Capture kits info supplied in the configuration file should be on sampleID level:

37

https://github.com/henrikstranneheim/MIP/tree/master/templates

MIP_api Documentation, Release 2.0

FDN:
IDN:
Flag: Entry

38 Chapter 12. Dynamic Configuration File

CHAPTER 13

Pedigree File

Family meta data file. Records important metrics for tracking samples and find biases in isolation of DNA or subse-
quent sequence analysis.

Among other things, the file enables:

1. Automatic coverage specification (correct target file(s))

2. Application of mendelian filtering models, e.g. autosomal dominant, based on pedigree, sex and disease status

3. Collection of analysis info for the sequence analysis pipeline

The pedigree file format is defined by PLINK, although we currently only support tab-sep pedigree files.

The first row should start with a “#” (hash) and contain relevant headers separated by tabs describing each column.
The first six columns are mandatory. The name and order of the headers should follow:

Table 13.1: Mandatory Columns

ColumnName Type Summary
FamilyID String Family identification number (mandatory)
SampleID String Sample identification number (mandatory)
Father String Father identification number (mandatory)
Mother String Mother identification number (mandatory)
Sex String “1”=male, “2”=female, “other”=unknown (mandatory)
Phenotype String “-9”=missing, “0”=missing, “1”=unaffected, “2”=affected

In addition to these mandatory columns we use the pedigree file to record meta data on each individual. Entries within
each column should be separated with ”;” (semi-colon) and entered in consecutive order. Each individual recorded in
the pedigree file is written on one line and a tab should separate each entry. No individual should be recorded twice.
The order of individuals below the header line does not matter.

If there is no information on the parents or the grandparents they should be encoded as “0”.

An example pedigree file can be found here.

39

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml
https://github.com/henrikstranneheim/MIP/blob/develop/templates/1_pedigree.txt

MIP_api Documentation, Release 2.0

On UPPMAX

Note: Changes to the pedigree file format will be recorded in this document.

The pedigree file should named: <FDN>_pedigree.txt.

Table 13.2: Additional columns in the pedigree file

ColumnName Default
Value

Type Summary

CMMSID Na String The clinics identification number for the individual
Tissue_origin Na String Tissue of Isolation (DNA/RNA)
Isolation_kit Na String Kit used to isolate nucleic acids
Isolation_date Na Integer Date of performing isolation of nucleic acids
Isolation_personnel Na String Personnel performing isolation of nucleic acids
Medical_doctor Na String Responsible clinician(s)
Inheritance_model Na String Probable disease genetic model inheritance within

pedigree
Phenotype_terms Na String Phenotypic terms associated with the disorder
CMMS_seqID Na String Batch identification
SciLifeID Na String ScilifeLab identification
Capture_kit Na String Capture kit used in library preparation
Capture_date Na Integer Date of performing capture procedure
Capture_personnel Na String Personnel performing capture procedure
Clustering_date Na Integer Date of clustering
Sequencing_kit Na String Sequencing kit
Clinical_db dbCMMS String The clinical database
Clini-
cal_db_gene_annotation

IEM String Genes associated with a disease group within the clinical
database

Pedigree capture kits aliases

• Agilent Sure Select

– Agilent_SureSelect.V2 => Agilent_SureSelect.V2.GenomeReferenceSourceVersion_targets.bed

– Agilent_SureSelect.V3 => Agilent_SureSelect.V3.GenomeReferenceSourceVersion_targets.bed

– Agilent_SureSelect.V4 => Agilent_SureSelect.V4.GenomeReferenceSourceVersion_targets.bed

– Agilent_SureSelect.V5 => Agilent_SureSelect.V5.GenomeReferenceSourceVersion_targets.bed

– Agilent_SureSelectCRE.V1 => Agilent_SureSelectCRE.V1.GenomeReferenceSourceVersion_targets.bed

– Latest => Agilent_SureSelect.V5.GenomeReferenceSourceVersion_targets.bed

• NimbleGen

– Nimblegen_SeqCapEZExome.V2 => Nimblegen_SeqCapEZExome.V2.GenomeReferenceSourceVersion_targets.bed

– Nimblegen_SeqCapEZExome.V3 => Nimblegen_SeqCapEZExome.V3.GenomeReferenceSourceVersion_targets.bed

40 Chapter 13. Pedigree File

MIP_api Documentation, Release 2.0

Note: You can use other target region files with MIP but then you have to supply the complete filename with ”.bed”
ending.

Abbrevations

Abbreviation Explation
FDN Family ID
CMMSID The CMMS sampleID
CMMS SeqID BatchID e.g. WES8
SciLifeID The id tag provided by Science for Life Laboratory
AR Autosomal recessive
AD Autosomal dominant

13.2. Abbrevations 41

MIP_api Documentation, Release 2.0

42 Chapter 13. Pedigree File

CHAPTER 14

Individual Identification Number (IDN)

Ensure that each individual are anonymized and unique. The IDN also facilitates tracking of all operations and analyses
performed upon the individual.

Note: Changes to the IDN format will be recorded in this document.

IDN Definition

The IDN consists of a three digits connected by dots and a disease status (DS) letter after the last digit. The disease
status letter can be either an “A” denoting affected subjects or a “U” denoting unaffected subjects. Each subject can
only have 1 IDN and once set it should never be changed.

• The first digit represents the family identification number (FamilyID/FDN). The two first numbers ,in the first
digit, represent the year that the first individual of the family was submitted to massively parallel sequencing,
MPS. The attached year is determined by the first individual to be submitted to MPS and this year should then
be used for all family members irrespective of how many times a sample or individual is resequenced. This rule
is enforced to not create multiple IDNs for the same individual and to make sure that all family members are
grouped and analyzed in the proper family. The following three numbers are the a continuous number for each
family that has been submitted for the year.

• The second digit represents the generation identification number (GenerationID/GDN) within that family. The
generation with the affected child is the defined as GDN = “I”. Older generation are numbered in ascending
order from GDN I, starting with II. Younger generations are numbered in descending order from GDN I starting
with “N” (=0 in Roman numerals).

• The last digit represents the subject identification number (SubjectID/SDN) within the family and generation.
Male subjects will have odd SDN numbers and female subjects even numbers. The lowest subject IDs will
be given to oldest subject within each family and generation and then in ascending order (both even and odd
numbers are counted). However, since there can be later additions in the pedigree this is not strictly enforced.

• The letter after the SDN is the disease status (DS) letter, which can be either of two possible letters. A = affected
and U = unaffected.

43

MIP_api Documentation, Release 2.0

Example

FamilyID.GenerationID.SubjectID(DS) or FDN.GDN.SDN(DS)

A child in the affected child generation being the second oldest male sibling in family 1 and the first to be submitted
to sequencing within the family in 1998 would be written as: 98001-1-3A (Figure 1).

44 Chapter 14. Individual Identification Number (IDN)

CHAPTER 15

The Code

Subroutines

FIDSubmitJob

Handles all communication with SLURM. All jobIDs and SLURM dependencies for all programs are set and submitted
here. Each program in MIP belongs to a “path” and together with the sampleID and/or familyID creates a chain of
dependencies determining the execution order in SLURM.

Paths

The central flow in MIP is called the MAIN path. MIP supports branching from the MAIN path for both familyIDs
and sampleIDs. It is also possible to create completely separate paths, which are not associated at all with the MAIN
path. However, once branched of from the MAIN path there is currently no support to merge the branch to the trunk
(i.e. MAIN path) again.

Each program is supplied with a dependency flag, which determines its dependencies in the path.

Dependency Flags:

-1 = Not dependent on earlier scripts, and are self cul-de-sâcs
0 = Not dependent on earlier scripts
1 = Dependent on earlier scripts (within sampleID_path or familyID_path)
2 = Dependent on earlier scripts (within sampleID_path or familyID_path), but are
→˓self cul-de-sâcs.
3 = Dependent on earlier scripts and executed in parallel within step
4 = Dependent on earlier scripts and parallel scripts and executed in parallel within
→˓step
5 = Dependent on earlier scripts both family and sample and adds to both familyID and
→˓sampleId jobs

Hash

All jobIDs are saved to the jobID hash using $jobID{FAMILYID_PATH}{CHAINKEY}. Only the last jobID(s)
required to set the downstrem dependencies are saved.

45

MIP_api Documentation, Release 2.0

46 Chapter 15. The Code

CHAPTER 16

Indices and tables

• genindex

• modindex

• search

47

	Overview
	Features
	Example Usage
	Getting Started
	Installation
	Prerequisites
	Usage

	Installation
	Setup
	Filename convention
	Dependencies

	Adding a new program
	Call DefineParameters
	Command line arguments in GetOptions
	if-block run checker in MAIN
	Custom subroutine
	Further information

	Structure
	mip.pl
	Sequence QC
	Alignment
	BAM file manipulation
	Coverage QC
	Variant calling
	Variant QC
	Variant Selection
	Variant annotation
	Variant evaluation
	qcCollect.pl
	covplots_exome.R / covplots_genome.R

	vcfParser
	Usage
	Installation

	QCCollect
	Usage
	Installation
	SetUp

	score_mip_variants
	Consequence
	Frequency
	Inheritance Model(s)
	Protein Functional Prediction
	Variant Quality Filter
	Conservation
	Combined Annotation Dependent Depletion (CADD)
	ClinVar

	Dynamic Configuration File
	Pedigree File
	On UPPMAX
	Abbrevations

	Individual Identification Number (IDN)
	IDN Definition

	The Code
	Subroutines

	Indices and tables

